ubelt.util_indexable module

The util_indexable module defines IndexableWalker which is a powerful way to iterate through nested Python containers.

RelatedWork:

References

ubelt.util_indexable._lazy_numpy()[source]
class ubelt.util_indexable.Difference(path: Tuple, value1: Any, value2: Any)[source]

Bases: NamedTuple

A result class of indexable_diff that organizes what the difference between the indexables is.

Create new instance of Difference(path, value1, value2)

path: Tuple

Alias for field number 0

value1: Any

Alias for field number 1

value2: Any

Alias for field number 2

_asdict()

Return a new dict which maps field names to their values.

_field_defaults = {}
_fields = ('path', 'value1', 'value2')
classmethod _make(iterable)

Make a new Difference object from a sequence or iterable

_replace(**kwds)

Return a new Difference object replacing specified fields with new values

class ubelt.util_indexable.IndexableWalker(data, dict_cls=(<class 'dict'>, ), list_cls=(<class 'list'>, <class 'tuple'>))[source]

Bases: Generator

Traverses through a nested tree-liked indexable structure.

Generates a path and value to each node in the structure. The path is a list of indexes which if applied in order will reach the value.

The __setitem__ method can be used to modify a nested value based on the path returned by the generator.

When generating values, you can use “send” to prevent traversal of a particular branch.

RelatedWork:
Variables:
  • data (dict | list | tuple) – the wrapped indexable data

  • dict_cls (Tuple[type]) – the types that should be considered dictionary mappings for the purpose of nested iteration. Defaults to dict.

  • list_cls (Tuple[type]) – the types that should be considered list-like for the purposes of nested iteration. Defaults to (list, tuple).

  • indexable_cls (Tuple[type]) – combined dict_cls and list_cls

Example

>>> import ubelt as ub
>>> # Given Nested Data
>>> data = {
>>>     'foo': {'bar': 1},
>>>     'baz': [{'biz': 3}, {'buz': [4, 5, 6]}],
>>> }
>>> # Create an IndexableWalker
>>> walker = ub.IndexableWalker(data)
>>> # We iterate over the data as if it was flat
>>> # ignore the <want> string due to order issues on older Pythons
>>> # xdoctest: +IGNORE_WANT
>>> for path, val in walker:
>>>     print(path)
['foo']
['baz']
['baz', 0]
['baz', 1]
['baz', 1, 'buz']
['baz', 1, 'buz', 0]
['baz', 1, 'buz', 1]
['baz', 1, 'buz', 2]
['baz', 0, 'biz']
['foo', 'bar']
>>> # We can use "paths" as keys to getitem into the walker
>>> path = ['baz', 1, 'buz', 2]
>>> val = walker[path]
>>> assert val == 6
>>> # We can use "paths" as keys to setitem into the walker
>>> assert data['baz'][1]['buz'][2] == 6
>>> walker[path] = 7
>>> assert data['baz'][1]['buz'][2] == 7
>>> # We can use "paths" as keys to delitem into the walker
>>> assert data['baz'][1]['buz'][1] == 5
>>> del walker[['baz', 1, 'buz', 1]]
>>> assert data['baz'][1]['buz'][1] == 7

Example

>>> # Create nested data
>>> # xdoctest: +REQUIRES(module:numpy)
>>> import numpy as np
>>> import ubelt as ub
>>> data = ub.ddict(lambda: int)
>>> data['foo'] = ub.ddict(lambda: int)
>>> data['bar'] = np.array([1, 2, 3])
>>> data['foo']['a'] = 1
>>> data['foo']['b'] = np.array([1, 2, 3])
>>> data['foo']['c'] = [1, 2, 3]
>>> data['baz'] = 3
>>> print('data = {}'.format(ub.repr2(data, nl=True)))
>>> # We can walk through every node in the nested tree
>>> walker = ub.IndexableWalker(data)
>>> for path, value in walker:
>>>     print('walk path = {}'.format(ub.repr2(path, nl=0)))
>>>     if path[-1] == 'c':
>>>         # Use send to prevent traversing this branch
>>>         got = walker.send(False)
>>>         # We can modify the value based on the returned path
>>>         walker[path] = 'changed the value of c'
>>> print('data = {}'.format(ub.repr2(data, nl=True)))
>>> assert data['foo']['c'] == 'changed the value of c'

Example

>>> # Test sending false for every data item
>>> import ubelt as ub
>>> data = {1: [1, 2, 3], 2: [1, 2, 3]}
>>> walker = ub.IndexableWalker(data)
>>> # Sending false means you wont traverse any further on that path
>>> num_iters_v1 = 0
>>> for path, value in walker:
>>>     print('[v1] walk path = {}'.format(ub.repr2(path, nl=0)))
>>>     walker.send(False)
>>>     num_iters_v1 += 1
>>> num_iters_v2 = 0
>>> for path, value in walker:
>>>     # When we dont send false we walk all the way down
>>>     print('[v2] walk path = {}'.format(ub.repr2(path, nl=0)))
>>>     num_iters_v2 += 1
>>> assert num_iters_v1 == 2
>>> assert num_iters_v2 == 8

Example

>>> # Test numpy
>>> # xdoctest: +REQUIRES(CPython)
>>> # xdoctest: +REQUIRES(module:numpy)
>>> import ubelt as ub
>>> import numpy as np
>>> # By default we don't recurse into ndarrays because they
>>> # Are registered as an indexable class
>>> data = {2: np.array([1, 2, 3])}
>>> walker = ub.IndexableWalker(data)
>>> num_iters = 0
>>> for path, value in walker:
>>>     print('walk path = {}'.format(ub.repr2(path, nl=0)))
>>>     num_iters += 1
>>> assert num_iters == 1
>>> # Currently to use top-level ndarrays, you need to extend what the
>>> # list class is. This API may change in the future to be easier
>>> # to work with.
>>> data = np.random.rand(3, 5)
>>> walker = ub.IndexableWalker(data, list_cls=(list, tuple, np.ndarray))
>>> num_iters = 0
>>> for path, value in walker:
>>>     print('walk path = {}'.format(ub.repr2(path, nl=0)))
>>>     num_iters += 1
>>> assert num_iters == 3 + 3 * 5
send(arg) send 'arg' into generator,[source]

return next yielded value or raise StopIteration.

throw(typ[, val[, tb]]) raise exception in generator,[source]

return next yielded value or raise StopIteration.

Parameters:
  • typ (Any) – Type of the exception. Should be a type[BaseException], type checking is not working right here.

  • val (Optional[object])

  • tb (Optional[TracebackType])

Returns:

Any

Raises:

StopIteration

References

_walk(data=None, prefix=[])[source]

Defines the underlying generator used by IndexableWalker

Yields:
Tuple[List, Any] | None – path (List) - a “path” through the nested data structure

value (Any) - the value indexed by that “path”.

Can also yield None in the case that send is called on the generator.

allclose(other, rel_tol=1e-09, abs_tol=0.0, equal_nan=False, return_info=False)[source]

Walks through this and another nested data structures and checks if everything is roughly the same.

Parameters:
  • other (IndexableWalker | List | Dict) – a nested indexable item to compare against.

  • rel_tol (float) – maximum difference for being considered “close”, relative to the magnitude of the input values

  • abs_tol (float) – maximum difference for being considered “close”, regardless of the magnitude of the input values

  • equal_nan (bool) – if True, numpy must be available, and consider nans as equal.

  • return_info (bool, default=False) – if true, return extra info dict

Returns:

A boolean result if return_info is false, otherwise a tuple of the boolean result and an “info” dict containing detailed results indicating what matched and what did not.

Return type:

bool | Tuple[bool, Dict]

Example

>>> import ubelt as ub
>>> items1 = ub.IndexableWalker({
>>>     'foo': [1.222222, 1.333],
>>>     'bar': 1,
>>>     'baz': [],
>>> })
>>> items2 = ub.IndexableWalker({
>>>     'foo': [1.22222, 1.333],
>>>     'bar': 1,
>>>     'baz': [],
>>> })
>>> flag, return_info =  items1.allclose(items2, return_info=True)
>>> print('return_info = {}'.format(ub.repr2(return_info, nl=1)))
>>> print('flag = {!r}'.format(flag))
>>> for p1, v1, v2  in return_info['faillist']:
>>>     v1_ = items1[p1]
>>>     print('*fail p1, v1, v2 = {}, {}, {}'.format(p1, v1, v2))
>>> for p1 in return_info['passlist']:
>>>     v1_ = items1[p1]
>>>     print('*pass p1, v1_ = {}, {}'.format(p1, v1_))
>>> assert not flag
>>> import ubelt as ub
>>> items1 = ub.IndexableWalker({
>>>     'foo': [1.0000000000000000000000001, 1.],
>>>     'bar': 1,
>>>     'baz': [],
>>> })
>>> items2 = ub.IndexableWalker({
>>>     'foo': [0.9999999999999999, 1.],
>>>     'bar': 1,
>>>     'baz': [],
>>> })
>>> flag, return_info =  items1.allclose(items2, return_info=True)
>>> print('return_info = {}'.format(ub.repr2(return_info, nl=1)))
>>> print('flag = {!r}'.format(flag))
>>> assert flag

Example

>>> import ubelt as ub
>>> flag, return_info =  ub.IndexableWalker([]).allclose(ub.IndexableWalker([]), return_info=True)
>>> print('return_info = {!r}'.format(return_info))
>>> print('flag = {!r}'.format(flag))
>>> assert flag

Example

>>> import ubelt as ub
>>> flag =  ub.IndexableWalker([]).allclose([], return_info=False)
>>> print('flag = {!r}'.format(flag))
>>> assert flag

Example

>>> import ubelt as ub
>>> flag, return_info =  ub.IndexableWalker([]).allclose([1], return_info=True)
>>> print('return_info = {!r}'.format(return_info))
>>> print('flag = {!r}'.format(flag))
>>> assert not flag

Example

>>> # xdoctest: +REQUIRES(module:numpy)
>>> import ubelt as ub
>>> import numpy as np
>>> a = np.random.rand(3, 5)
>>> b = a + 1
>>> wa = ub.IndexableWalker(a, list_cls=(np.ndarray,))
>>> wb = ub.IndexableWalker(b, list_cls=(np.ndarray,))
>>> flag, return_info =  wa.allclose(wb, return_info=True)
>>> print('return_info = {!r}'.format(return_info))
>>> print('flag = {!r}'.format(flag))
>>> assert not flag
>>> a = np.random.rand(3, 5)
>>> b = a.copy() + 1e-17
>>> wa = ub.IndexableWalker([a], list_cls=(np.ndarray, list))
>>> wb = ub.IndexableWalker([b], list_cls=(np.ndarray, list))
>>> flag, return_info =  wa.allclose(wb, return_info=True)
>>> assert flag
>>> print('return_info = {!r}'.format(return_info))
>>> print('flag = {!r}'.format(flag))
diff(other, rel_tol=1e-09, abs_tol=0.0, equal_nan=False)[source]

Walks through two nested data structures finds differences in the structures.

Parameters:
  • other (IndexableWalker | List | Dict) – a nested indexable item to compare against.

  • rel_tol (float) – maximum difference for being considered “close”, relative to the magnitude of the input values

  • abs_tol (float) – maximum difference for being considered “close”, regardless of the magnitude of the input values

  • equal_nan (bool) – if True, numpy must be available, and consider nans as equal.

Returns:

information about the diff with

”similarity”: a score between 0 and 1 “num_differences” being the number of paths not common plus the

number of common paths with differing values.

”unique1”: being the paths that were unique to self “unique2”: being the paths that were unique to other “faillist”: a list 3-tuples of common path and differing values “num_approximations”:

is the number of approximately equal items (i.e. floats) there were

Return type:

dict

Example

>>> import ubelt as ub
>>> dct1 = {
>>>     'foo': [1.222222, 1.333],
>>>     'bar': 1,
>>>     'baz': [],
>>>     'top': [1, 2, 3],
>>>     'L0': {'L1': {'L2': {'K1': 'V1', 'K2': 'V2', 'D1': 1, 'D2': 2}}},
>>> }
>>> dct2 = {
>>>     'foo': [1.22222, 1.333],
>>>     'bar': 1,
>>>     'baz': [],
>>>     'buz': {1: 2},
>>>     'top': [1, 1, 2],
>>>     'L0': {'L1': {'L2': {'K1': 'V1', 'K2': 'V2', 'D1': 10, 'D2': 20}}},
>>> }
>>> info = ub.IndexableWalker(dct1).diff(dct2)
>>> print(f'info = {ub.urepr(info, nl=2)}')

Example

>>> # xdoctest: +REQUIRES(module:numpy)
>>> import ubelt as ub
>>> import numpy as np
>>> a = np.random.rand(3, 5)
>>> b = a + 1
>>> wa = ub.IndexableWalker(a, list_cls=(np.ndarray,))
>>> wb = ub.IndexableWalker(b, list_cls=(np.ndarray,))
>>> info =  wa.diff(wb)
>>> print(f'info = {ub.urepr(info, nl=2)}')
>>> a = np.random.rand(3, 5)
>>> b = a.copy() + 1e-17
>>> wa = ub.IndexableWalker([a], list_cls=(np.ndarray, list))
>>> wb = ub.IndexableWalker([b], list_cls=(np.ndarray, list))
>>> info =  wa.diff(wb)
>>> print(f'info = {ub.urepr(info, nl=2)}')
_abc_impl = <_abc._abc_data object>
ubelt.util_indexable._make_isclose_fn(rel_tol, abs_tol, equal_nan)[source]
ubelt.util_indexable.indexable_allclose(items1, items2, rel_tol=1e-09, abs_tol=0.0, return_info=False)[source]

Walks through two nested data structures and ensures that everything is roughly the same.

Note

Deprecated. Instead use:

ub.IndexableWalker(items1).allclose(items2)

Parameters:
  • items1 (dict | list | tuple) – a nested indexable item

  • items2 (dict | list | tuple) – a nested indexable item

  • rel_tol (float) – maximum difference for being considered “close”, relative to the magnitude of the input values

  • abs_tol (float) – maximum difference for being considered “close”, regardless of the magnitude of the input values

  • return_info (bool, default=False) – if true, return extra info

Returns:

A boolean result if return_info is false, otherwise a tuple of the boolean result and an “info” dict containing detailed results indicating what matched and what did not.

Return type:

bool | Tuple[bool, Dict]

Example

>>> import ubelt as ub
>>> items1 = {
>>>     'foo': [1.222222, 1.333],
>>>     'bar': 1,
>>>     'baz': [],
>>> }
>>> items2 = {
>>>     'foo': [1.22222, 1.333],
>>>     'bar': 1,
>>>     'baz': [],
>>> }
>>> flag, return_info =  ub.indexable_allclose(items1, items2, return_info=True)
>>> print('return_info = {}'.format(ub.repr2(return_info, nl=1)))
>>> print('flag = {!r}'.format(flag))